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ABSTRACT

While the concept of a Sparse Neural Network has been
researched for some time, researchers have only recently
made notable progress in the matter. Techniques like Sparse
Evolutionary Training allow for significantly lower computa-
tional complexity when compared to fully connected models
by reducing redundant connections. That typically takes
place in an iterative process of weight creation and removal
during network training. Although there have been numerous
approaches to optimize the redistribution of the removed
weights, there seems to be little or no study on the effect of ac-
tivation functions on the performance of the Sparse Networks.
This research provides insights into the relationship between
the activation function used and the network performance at
various sparsity levels.
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1. INTRODUCTION

Artificial Neural Network (ANN) is a powerful Deep Learning
method inspired by the human brain architecture [22] which
has been adapted for speech recognition, computer vision,
natural language processing, and many others [20].

Although constantly researched and improved, ANNs still have
many flaws. While most researchers strive to improve algo-
rithms’ accuracy, it is the efficiency of deep learning solutions
that is still one of its major limitations. The most common
implementation of ANNSs is the Multilayer Perceptron (MLP)
which consists of fully connected neuron layers. That causes
high redundancy because most of the connections have little
or no impact on the accuracy of the model and could be
removed [4]. One idea to improve the efficiency of ANNs
is to limit the number of connections between layers, thus
introducing sparsity in the model. Mocanu et al. suggested
a training method called Sparse Evolutionary Training (SET)
[18] supposed to deliver significantly greater performance by
cutting up to 99.9% of connections [14].

Many other ideas on how to develop Sparse Neural Networks
(SNNs) without training a fully connected model have been
proposed, but most focus on the distribution of connections,
while there has been little or no research on the impact of the
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choice of activation function used on the sparsity effect in the
SNNs. This research investigates this relation to understand
whether the activation functions currently used for densely
connected networks [22] still behave reliably in the sparse
context and which functions shall be recommended for SNN
implementations. The findings will hopefully help researchers
and developers make better decisions while choosing acti-
vation functions and sparsity levels for their models, thus
improving the performance of their models. The research
questions answered in the paper are:

RQ1 What is the impact of activation functions on the sparsity
sweep and accuracy of SNNs?

RQ2 Is there a single activation function to be preferred in
SNN implementations?

RQ3 Is the overfitting problem affecting SNNs with various
activation functions differently?

To answer the above mentioned questions, a number of ex-
periments have been conducted to compare accuracy and loss
function scores during training. The experiments have been
conducted for 5 sparse levels and the dense network, for each
of the seven Activation Functions (AFs): ReLU, Sigmoid, SELU,
SReLU, Tanh, Softplus, Softsign. Sparsity levels used ranged
from 71.2% to 98.85%.

This paper is divided into the following sections. The Back-
ground section explains the main concepts needed to under-
stand the methods and findings. Next, Related Work section
provides information on the researchers working on the topic
of Sparse Neural Networks. Then, the methodology and results
are discussed separately, providing details about a suggested
framework for analysis of the differences in the impact of acti-
vation functions and the results of this implementation on the
SET algorithm and CIFAR10 dataset, respectively. Lastly, the
Conclusions and Future Work section summarizes the findings
and describes suggested future research areas.

2. BACKGROUND
2.1 Artificial Neural Networks (ANN)

Artificial Neural Networks is a family of networks built of in-
put, hidden and output layers, inspired by the neural network
of the biological brain. The most known example so far is the
Multilayer Perceptron (MLP), a network consisting of densely
connected layers of perceptrons [24]. While there are more
network models created and used nowadays, this research will
mainly focus on the MLP.

2.2 Sparse Neural Network (SNN)

In comparison to Dense Neural Networks, SNNs drop some of
the connections, thus limiting the computational complexity
of the algorithm. That allows them to not only train faster but
also enables bigger network architectures, which typically re-
sults in an accuracy increase. Figure 1 visualizes an example of
a sparsely connected architecture.



Figure 1: Sparsely connected ANN layers.

2.3 Sparse Evolutionary Training (SET)

Sparse Evolutionary Training is a method developed by Mo-
canu et al. [18] allowing to build SNNs by first starting with
sparsely connected layers, iteratively growing new weights in
random locations and pruning the weights closest to 0. The
framework suggested in this paper uses SET implementation
as a code base for training and sparsity sweep evaluation.

2.4 Activation Function (AF)

Activation Functions define the logic for each of the neurons
within ANNs by modelling complex behaviour with non-linear
mathematical functions [26]. Most popular functions are:
Sigmoid , Hyperbolic Tangent (Tanh), Rectified Linear Unit
(ReLU) [22], Softsign and Softplus [15] and a number of ReLU
modifications like SELU and SReLU [13]. Figure 2 visualizes
the functions.
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Figure 2: Plots of activation functions used.

2.5 SReLU

S-shaped rectified linear activation unit (SReLU) is a relatively
little-known activation function suggested by Jin et al. [10] and
used by Mocanu et al. [18] in their implementation of the SET
algorithm. It combines 3 linear functions defined by 4 dynamic
parameters. Note that the SReLU plot in Figure 2 is a sample
presentation with set parameters. During training, the param-
eters are adjusted using back propagation [10].

2.6 Sparsity Sweep

Sparsity Sweep is the relation between the accuracy and
sparsity of the model. At a first thought, with higher sparsity
of the model, some information is lost which implies a drop
in accuracy. However, the performance of sparse neural
networks can sometimes be greater than that of their dense
counterparts with the same hyperparameters when they are
trained with sparse training methods e.g. SET [18].

2.7 Opverfitting

Over- and underfitting are two concepts in Machine Learning
describing the discrepancy between training and validation
(testing) set performance. Underfitting can be noticed when
there is significant potential to improve the validation set ac-
curacy, while overfitting means the effect when the algorithm
tries to memorize the training data, while reducing the test
accuracy. Figure 3 explains the concepts in a visual form by
showing example test and training errors during training.
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Figure 3: Overfitting example from [25].

3. RELATED WORK

Researchers have conducted a significant amount of research
on SNN implementations. To start with, in 1990, LeCun et
al. [12] suggested pruning unimportant weights from Neural
Networks to achieve better results and performance. Using
those insights, in 2015, Han et al. [9] suggested a training
method which not only prunes unimportant weights but also
retrains the model to tune the parameters. Experiments have
shown [9] that this allows for a much lower computational
complexity, but a limitation of that method is the maximum
size of a fully connected network that can be trained. To
solve the issue, researchers have been working on sparse
model training methods. In 2017, Mocanu et al. [17, 18] have
developed Sparse Evolutionary Training (SET) as a way to train
a SNN from sparse instead of pruning a fully connected and
trained ANN. The method removes weights close to 0 in a set
interval and then distributes new ones randomly. Bellec et al.
[1] suggested a method for supervised rewiring of the network
during training keeping the total number of connections low
using stochastic sampling theory. The method has been called
Deep Rewiring (Deep R) due to its extensive rewiring during
the Deep Learning training process. Another approach, the
Neural Network Synthesis Tool (NeST) initializes a sparsely
connected network and updates parameters according to
gradient information and performs pruning based on the
magnitude of connections and neurons [3]. SET has proven to
be efficient enough to run a network with over million neurons
on a normal laptop [14] and to be more accurate than Deep
R [5]. Lapshyna [11] proposed an improvement to the weight
update process in SET by gradually removing connections dur-
ing training related to the increase in the accuracy level. It was
proved that the number of connections can be vastly limited
with negligible loss of accuracy. Bird et al.[2] came up with
another way to improve the current algorithms by using Den-
dritic Normalisation to improve learning performance, based
on the SET algorithm. He proved that the costs and accuracy
can be vastly improved, providing reliable quality for the future
research. In 2019, Mostafa et al. [19] suggested a method called
Dynamic Sparse Reparametrization (DSR) presented as more
efficient and accurate than the above-mentioned examples. It
makes use of adaptive thresholds for the number of weights
pruned and automatically reallocates parameters across lay-
ers, which avoids a fixed sparsity level. Sparse Momentum is a
method redistributing weights relatively to mean momentum,



both between layers and within each of the layers. DSR and
Sparse Momentum have proven slightly more accurate than
SET [5]. Based on the works of their fellow researchers, a group
of researchers from Google and DeepMind has come up with a
Rigged Lottery (RigL) [6] method for training SNNs with fixed
complexity without accuracy loss. RigL removes connections
based on weight magnitudes and adds new ones according to
gradient information. This method has achieved the highest
accuracy level and relatively low sparsity sweep, compared to
other techniques.

While all the above-mentioned researchers have been working
towards improvements in the accuracy of SNNs, they all have
only tried improving the previous approaches by redistribut-
ing connections and associated weights. However, while
there is quite some research on the impact of dense ANNs
[21],[16],[23],[71,[10], little or no research has been conducted
on the impact of the activation function choice on SNNs’
performance, most probably because this research direction
is still new and under development. The approach suggested
in this paper is mainly based on SET but can be also applied
to other works, which could provide insightful overview on
the differences between when many activation functions are
taken into account.

4. EVALUATION FRAMEWORK

In this research, a framework for comparing performance and
the sparsity effect between activation functions is proposed.
Although the explained example is based on the SET algorithm
implementation [18], we believe that, with some adjustments,
it can also be used for other sparse training methods.

First of all, all experiments used the same hyperparameters
stated in Table 1, ensuring the performance changes depend
solely on the adjusted parameters - epsilon and the activation
function. Although they can be adjusted, one should make
sure to keep them consistent across all experiments, as they
might impact the outcomes significantly.

Hyperparameter Value

Learning rate 0.01

Optimiser SGD

Momentum 0.9

( (zeta) 0.3

Batch size 100

Loss Function Categorical Cross-entropy

Dropout rate 0.3

Table 1: Hyperparameters used in training of MLP [8].

Moreover, the SET algorithm implementation needs to be ad-
justed so that the accuracy and loss function values are saved
for both the training and validation sets after each of the train-
ing epochs. Then, models are trained for all combinations of
selected activation functions and epsilon values correspond-
ing to the desired sparsity levels. Sparsity means simply the
probability of a connection between neurons to be removed
and thus, it is the opposite of density. Note that this definition
is closely related to SET since it removes weights randomly and
thus other training techniques may implement sparsity differ-
ently.

Sparsity=1-density 1)

Since sparsity is dependent both on the epsilon value and the
architecture of the algorithm , we can derive the equation for
epsilon € from equation (1) of SET [18] as

npxnp+y

e=(1-sparsity) x( (2)

np+np

where n; and n;,; mean the dimensions of consecutive layers.
This allows us to easily calculate epsilon for all needed spar-
sity levels. Table 2 shows number of incoming connections per
layer, depending on the sparsity of the network. Algorithm 1
describes steps needed to optimize the evaluation procedure.
Saving results in clearly declared directories allows for auto-
matic chart generation for all activation functions and sparsity
levels.

| Parameters [#]

Sparsity | Epsilon

| Istlayer  2ndlayer 3rdlayer
98.85% 10 141312 46000 46000
97.12% | 20 353895 115200 115200
94.25% | 50 706560 230000 230000
88.50% 100 1413120 460000 460000
71.20% 500 3538944 1152000 1152000
dense n.d. 12288000 4000000 4000000

Table 2: Number of parameters between layers per sparsity

Algorithm 1 Proposed Sparsity Sweep evaluation framework

set hyperparameters
adjust parameters to be saved
for each activation function (AF) do
set activation function
set output location for results
for each sparsity level do
set € value using equation 2
train model
end for
end for
produce performance charts
produce sparsity sweep charts
produce overfitting charts

4.1 Opverfitting function

Overfitting occurs when a network is trained in too much de-
tail, trying to fit the noise in the data into their model. Most
of the time, scientists try to analyze this effect by comparing
training and validation set accuracy scores over the training
period. However, since several activation functions are com-
pared in this study, a new function displaying overfitting as the
difference between the scores is introduced:

0=accy—accy 3)

where o, accy and accy represent overfitting, training set accu-
racy and validation set accuracy, respectively. Overfitting val-
ues (Eq. 3) above 0 suggest that the network is overfitting, while
negative values might mean the opposite - underfitting. Please
note that in the beginning of training, the network can show
significantly unstable results and thus we should focus on the
long-term trend of the function rather than its details.

S. RESULTS

To gain deeper insights, researchers often need to take a look at
their results from many perspectives. Therefore, a number of
plots have been prepared and analysed but in order to convey
the most important message, only a handful is shown below.
A curious reader can find other charts in the appendix. In this
section, the implementation details as well as the outcomes of
the study will be discussed.



Sparsity sweep on the validation set
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Sparsity sweep on the training set

90
80
70 A
60
<
o= 50
28
e TS s LTI
O 3 40
1%
<
304 T e RelLU Dense ——— SELU Sparse
—— RelLU Sparse ~ ---- Softsign Dense
204 Sigmoid Dense —— Softsign Sparse
—— Sigmoid Sparse Softplus Dense
----- Tanh Dense Softplus Sparse
10— el — TanhSparse e SReLU Dense
----- SELU Dense —— SRelLU Sparse
0 T T T T T
70 75 80 85 90 95 100

Sparsity[%]

(b) Training set

Figure 4: Accuracy sparsity sweep

5.1 Implementation and architecture

Within this research, the framework suggested above has been
implemented using the adjusted SET-MLP-Keras-Weights-
Mask project developed as a part of and presented in [18].
Separate scripts included in the project have been used to train
the sparse and dense networks. The project uses Keras for
model training and Python packages NumPy and Matplotlib
to visualize the results. It is important to note that while
the results observed with this implementation resemble the
behavior of truly sparse networks, at the moment (June, 2020)
Keras does not support SNNs and thus the SET implementa-
tion used in this research masks weights to 0 to achieve the
same structure. The experiments have been conducted on the
CIFAR10 dataset, which consists of 60000 images split into 10
classes, 6000 images each. As the dimensions of the images are
32x32[px] and represented in 3 channel colors, the input layer
of the model has nyp number of input parameters as follows:

np=32x32x3=3072 4)

The hidden layers have been set in the research done by Mo-
canu et al. [18] to 3 layers, 4000, 1000 and 4000 neurons each,
respectively. Lastly, the output layer contains 10 neurons, cor-
responding to 10 classes in the CIFAR10 dataset. All models
were trained for 500 epochs and used the same hyperparame-
ters but the epsilon value and activation function.

5.2 Sparsity Sweep

For each activation function, a model has been trained using 6
different sparsity levels, from 98.85% (only 1.15% connections
left) to the dense level. Scores for the accuracy as well as the
loss function value were collected after each training epoch
for both training and validation sets. Table 3 shows the final
accuracy results for each of the models after 500 epochs which
are visualized in the Figure 4a. It is clear to note that SReLU has
performed best overall, while ReLU performed almost as well,
with only a slight difference in accuracy on all sparsity levels.
Networks using Softsign, Tanh and Softplus scored slightly
worse and more importantly, their performance decreased
with increased sparsity, meaning their optimal sparsity is
much lower than for ReLU and SReLU. The case of SELU is
significantly standing out because at the dense levels, the
network could not predict anything at more than the random
chance (10%) after 500 epochs of training, while very sparse
networks trained with SELU performed better than those with
Sigmoid or Softplus and just as well as Tanh and Softsign.

Accuracy [%] on the validation set at sparsity level:

Activation | go acon * 97.12%  94.25%  88.50% 71.20%  dense
RelLU 6491 6689 7055 716 692 63.21
Sigmoid | 45.66  48.81 5191 5495 59.11  63.8
Tanh 5733 59.86  62.19  63.88 6439  49.69

Softplus 54.3 57.8 61.83 64.6 65.84 63.27
Softsign 58.02 60.38 62.84 64.19 65.27 64.08
SELU 57.72 58.98 56.75 55.84 10 10

SReLU 66.64 69.44 72.22 73.14 70.38 68.86

Table 3: Accuracy [%] on the validation set after 500 epochs

5.3 General Performance

When it comes to the training performance, it is best to look
at the performance charts. Figure 5 shows four charts which
point out the most notable differences between the activation
functions across the four selected sparsity levels.

Clearly, SReLU is the winner when it comes to accuracy, but
it does not gain much better performance at optimal sparsity
levels. ReLU, on the other hand, gains a lot of accuracy when
trained on a sparse network, while it performs only as well as
Softplus, Softsign, SELU and Sigmoid in the dense setting. In-
terestingly, Sigmoid is an example of a function that performs
fine on dense network, but did not work well with sparse net-
works - its learning progress was somewhat delayed propor-
tionally to the sparsity level. SELU is an example of a network
that shows the opposite effect - while it performs fairly well
on sparse networks, the training dies out after several training
epochs. The behavior will be further discussed in the discus-
sion section. When it comes to extremely sparse networks e.g.
Sparsity 98.85% at Figure 5d, we can notice that while general
accuracy dropped noticeably, the difference in accuracy varies
significantly, depending on the activation function. Most no-
ticeable drop in accuracy by the sparsity affected the models
using Sigmoid and Softplus, while the model using SELU acti-
vation function scored higher than its dense counterparts.

To better understand the reasons behind the differences in per-
formance of the examined activation functions, one needs to
look at the problem from many angles. Plots visualizing the
data from the function-specific point of view can be found in
the appendix section A.



Performance on Dense Network
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Figure 5: Comparison of models’ performance.

5.3.1 SELU

Unexpected behavior of SELU is clearly noticeable on the
dense levels. The performance chart of SELU in Figure 6,
clearly shows that the dense- and the sparsest network (Spar-
sity 71.2%) experience an accuracy drop to the random level
(10%) after a couple of training epochs. Our hypothesis is that
the learning rate used in the training was too high. As definite
conclusions cannot be gained from just the networks trained
in this study, a study on many dense levels is needed to find an
explanation of the issue.
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Figure 6: SELU accuracy on the validation set

5.4 Opverfitting

Charts in Figure 7 show the above-mentioned overfitting func-
tion results for four selected sparsity levels. We can notice that
for the dense level (Fig. 7a), the difference between functions
is significant. Tanh is underfitting, Softplus and Sigmoid fit rel-
atively well, while ReLU, SReLU and Softplus are significantly
overfitting. The overfitting effect for SELU is not analysed on
dense levels due to the network training issue mentioned be-
fore.

Since overfitting is caused by over-trained models, it is reason-
able to assume that with increased sparsity the overfitting ef-
fect will decrease, which is indeed the case. However, not all
functions react in the same way. At sparsity level 71.2% (Fig.
7b), most functions show smaller overfitting effect while the
Hyperbolic Tangent (Tanh) seems to achieve a good fit. We
can notice that Sigmoid started underfitting, while SReLU and
ReLU plots seem to show barely any difference when compared
to the dense plots. At sparsity 88.5% (Fig. 7c), the overfitting
effect is even less noticeable - most functions are underfitting,
while only ReLU and SRelLU are slightly overfitting. In case of
the extremely sparse networks with sparsity 98.85% (Fig. 7d),
all functions were underfitting.
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Figure 7: Overfitting effect per sparsity level.

6. CONCLUSIONS AND FUTURE WORK

The framework suggested allows for comparisons between
activation functions and their effects on the sparsity sweep of
SNNs, while the experiments conducted provide insights into
the impact of the selected activation functions on the accuracy
of models trained with SET. Clearly, SReLU, which was used
in Mocanu’s implementation of SET [18], performs best at all
sparsity levels, but the sparsity does not affect its achieved
accuracy significantly. Other functions like ReLU, Tanh, Soft-
plus achieve noticeably higher performance at sparsity levels
71.2% and 88.5%, higher than at the dense levels. While in
general, most activation functions perform best at sparsity
level 71.2%, ReLU and SReLU performed best at sparsity 88.5%
and SELU achieved best performance at the extremely high
sparsity level 98.85%. Sigmoid is an exception there, as its
performance decreases for sparser networks. Our hypothesis
is that it is caused by Sigmoid not being zero-centered. When
it comes to under- and overfitting, at higher sparsity levels,
most functions start underfitting but they are not affected by
the sparsity equally. SReLU and ReLU seem to have highest
optimal point of sparsity when they achieve the best training
fit, while the overfitting effect of Softplus was most affected by
the increased sparsity.

Hopefully, researchers will find this paper useful to get insight
and inspirations on the impact of activation functions on
the sparsity sweep of SNNs. Naturally, this research does not
cover all the questions around this topic and therefore, more

research in the area would help answer the questions.
In the future, researchers could work on the following issues:

1. The experiments shall be repeated on datasets other
than CIFAR10 to compare the results.

2. More experiments could be done on more dense levels
around 50-90%. This would provide more accurate in-
sights for optimal sparsity levels of each of the activation
functions.

3. The training issue of SELU needs to be examined with
a deeper mathematical analysis on a number of dense
levels.

4. More work can be done to better understand the under-
lying reasons for the differences between the effects of
those activation functions.

5. Naturally, other AFs should still be tested to better un-
derstand the similarities between groups of AFs
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APPENDIX
A. PERFORMANCE
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Figure 8: Accuracy on the validation set per function.
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